Tugas Besar


KONTROL SISTEM BUNGKER SEBAGAI SHELTER

1.Tujuan
 [Kembali]

a. Mengetahui cara menggunakan mux demux

b. Mengetahui cara kerja rangkaian aplikasi





2. Alat dan Bahan [Kembali]

Alat:

1. Power Suply




2. Voltmeter DC



Bahan:

1. Resistor





2. Diode





3.Transistor(BC547)





4. Sensor LM35







5. Logic State





6. Sensor MQ 2

 





8.Relay






9. Motor DC




11. IC Op Amp

    


12. Battery


 


13. Sensor flame



14. Gerbang Inverter/not



15.  IC 4556


 
 16. Encoder IC 74147




 



17. Buzzer





18. Sensor getaran SW420



19. Infrared Sensor



20.Loadcell sensor





3. Dasar Teori [Kembali]

1.Resistor

Resistor merupakan komponen pasif yang memiliki nilai resistansi tertentu dan berfungsi untuk menghambat jumlah arus listrik yang mengalir dalam suatu rangkaian. Resistor dapat diklasifikasikan menjadi beberapa jenis, diantaranya resistor nilai tetap (fixed resistor), resistor variabel (variabel resistor), thermistor, dan LDR.







Cara membaca nilai resistor

Cara menghitung nilai resistansi resistor dengan gelang warna :

1. Masukan angka langsung dari kode warna gelang pertama.

2. Masukan angka langsung dari kode warna gelang kedua.

3. Masukan angka langsung dari kode warna gelang ketiga.

 4. Masukkan jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10^n).

5. Gelang terakhir merupakan nilai toleransi dari resistor



2. Diode



Cara Kerja Dioda:

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

a. tanpa tegangan



Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. 

b. kondisi forward bias



Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif.

c. kondisi reverse bias



Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub.

3. Transistor

Transistor NPN



Pada transistor NPN, semikonduktor tipe-P diapit oleh dua semikonduktor tipe-N. Transistor NPN juga dapat dibentuk dengan menghubungkan anoda dari dua dioda sebagai base dan katoda sebagai kolektor dan emitor. Arus mengalir dari kolektor ke emitor karena potensial kolektor lebih besar daripada base dan emitor.


Transistor PNP



Pada transistor PNP, semikonduktor tipe-N diapit oleh dua semikonduktor tipe-P. Transistor PNP juga dapat dibentuk dengan menghubungkan katoda dari dua dioda sebagai base dan anoda sebagai kolektor dan emitor. Hubungan emitter-base foward bias sementara collector-base reverse bias. Jadi, arus mengalir dari emitor ke kolektor karena potensial emitor lebih besar daripada base dan kolektor.

Transistor sebagai saklar

Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titk jenuh (saturasi). Pada titk jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut-off sehingga tidak ada arus dari kolektor ke emitor. Nilai resistor terhubung ke base (Rb) dapat dihitung dengan;

Rb = Vbe / Ib

Transistor sebagai penguat

Transistor sebagai penguat jika bekerja dalam daerah aktif. Tegangan, arus, dan daya dapat diperkuat dengan beberapa konfigurasi seperti common emitter, common colector, dan common base.

DC Current Gain = Collector Current (Ic) / Base Current (Ib)




JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika DasarJK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop. Rangkaian Dasar JK Flip-Flop JK flip-flop,teori jk flip-flop,fungsi jk flip flop,flip flop jk,rangkaian jk flip flop,dasar jk flip flop,truth table jk flip flop,jk ff,aplikasi jk flip-flop,manfaat jk flip-flop,kelebihan jk flip-flop,ic jk flip flop Gambar rangkaian diatas memperlihatkan salah satu cara untuk membangun sebuah flip-flop JK, J dan K disebut masukan pengendali karena menentukan apa yang dilakukan oleh flip-flop pada saat suatu pinggiran pulsa positif diberikan. Rangkaian RC mempunyai tetapan waktu yang sangat pendek, hal ini mengubah pulsa lonceng segiempat menjadi impuls sempit. Pada saat J dan K keduanya 0, Q tetap pada nilai terakhirnya. Pada saat J rendah dan K tinggi, gerbang atas tertutup, maka tidak terdapat kemungkinan untuk mengeset flip-flop. Pada saat Q adalah tinggi, gerbang bawah melewatkan pemicu reset segera setelah pinggiran pulsa lonceng positif berikutnya tiba. Hal ini mendorong Q menjadi rendah . Oleh karenanya J = 0 dan K=1 berarti bahwa pinggiran pulsa lonceng positif berikutnya akan mereset flip-flopnya. Pada saat J tinggi dan K rendah, gerbang bawah tertutup dan pada saat J dan K keduanya tinggi, kita dapat mengeset atau mereset flip-flopnya. Untuk lebih jelasnya daat dilihat pada tabel kebenaran JK flip-flop berikut. Tabel Kebenaran JK Flip-Flop CLK J K Q Keterangan 0 0 0 * Latch, kondisi terakhir ↑ 0 1 0 ↑ 1 0 1 ↑ 1 1 1 Latch, kondisi terakhir ↑ 1 1 0 Togle ↑ 1 1 1 Togle ↑ 1 1 0 Togle ↑ 0 0 0 Latch, kondisi terakhir ↑ 1 1 0 Latch, kondisi terakhir ↑ 1 1 1 Togle ↑ 1 1 0 Togle Selain dengan tabel kebenaran, dalam memahami karakteristik JK flip-flop seperti tabel diatas dapat dapat juga dipahami melalui timing diagram dari pemberian input kepada JK flip-flop seperti ditunjukan pada gambar berikut. Timing Diagram JK Flip-Flop Timing Diagram JK FF,diagram waktu jk flip flop Dari kedua penjelasan diatas (tabel kebenaran dan timing diagram) karakteristik JK flip-flop dapat kita pahami dengan cepat dan baik. Aplikasi JK flip-flop sering digunakan sebagai komponen utama suatu pencacah digital.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop. Rangkaian Dasar JK Flip-Flop JK flip-flop,teori jk flip-flop,fungsi jk flip flop,flip flop jk,rangkaian jk flip flop,dasar jk flip flop,truth table jk flip flop,jk ff,aplikasi jk flip-flop,manfaat jk flip-flop,kelebihan jk flip-flop,ic jk flip flop Gambar rangkaian diatas memperlihatkan salah satu cara untuk membangun sebuah flip-flop JK, J dan K disebut masukan pengendali karena menentukan apa yang dilakukan oleh flip-flop pada saat suatu pinggiran pulsa positif diberikan. Rangkaian RC mempunyai tetapan waktu yang sangat pendek, hal ini mengubah pulsa lonceng segiempat menjadi impuls sempit. Pada saat J dan K keduanya 0, Q tetap pada nilai terakhirnya. Pada saat J rendah dan K tinggi, gerbang atas tertutup, maka tidak terdapat kemungkinan untuk mengeset flip-flop. Pada saat Q adalah tinggi, gerbang bawah melewatkan pemicu reset segera setelah pinggiran pulsa lonceng positif berikutnya tiba. Hal ini mendorong Q menjadi rendah . Oleh karenanya J = 0 dan K=1 berarti bahwa pinggiran pulsa lonceng positif berikutnya akan mereset flip-flopnya. Pada saat J tinggi dan K rendah, gerbang bawah tertutup dan pada saat J dan K keduanya tinggi, kita dapat mengeset atau mereset flip-flopnya. Untuk lebih jelasnya daat dilihat pada tabel kebenaran JK flip-flop berikut. Tabel Kebenaran JK Flip-Flop CLK J K Q Keterangan 0 0 0 * Latch, kondisi terakhir ↑ 0 1 0 ↑ 1 0 1 ↑ 1 1 1 Latch, kondisi terakhir ↑ 1 1 0 Togle ↑ 1 1 1 Togle ↑ 1 1 0 Togle ↑ 0 0 0 Latch, kondisi terakhir ↑ 1 1 0 Latch, kondisi terakhir ↑ 1 1 1 Togle ↑ 1 1 0 Togle Selain dengan tabel kebenaran, dalam memahami karakteristik JK flip-flop seperti tabel diatas dapat dapat juga dipahami melalui timing diagram dari pemberian input kepada JK flip-flop seperti ditunjukan pada gambar berikut. Timing Diagram JK Flip-Flop Timing Diagram JK FF,diagram waktu jk flip flop Dari kedua penjelasan diatas (tabel kebenaran dan timing diagram) karakteristik JK flip-flop dapat kita pahami dengan cepat dan baik. Aplikasi JK flip-flop sering digunakan sebagai komponen utama suatu pencacah digital.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar

4. Logic State

status logika Pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.

5. Sensor MQ 2



Sensor MQ-2 adalah sensor yang digunakann untuk mendeteksi konsentrasi gas yang mudah terbakar di udara serta asap dan output membaca sebagai tegangan analog. Sensor gas asap MQ-2 dapat langsung diatur sensitifitasnya dengan memutar trimpotnya. Sensor ini biasa digunakan untuk mendeteksi kebocoran gas baik di rumah maupun di industri. Gas yang dapat dideteksi diantaranya : LPG, i-butane, propane, methane , alcohol, Hydrogen, smoke.

Spesifikasi sensor pada sensor gas MQ-2 adalah sebagai berikut:

·Tegangan Operasi + 5V

. Dapat digunakan untuk mengukur atau mendeteksi LPG, Alkohol, Propana, Hidrogen, CO dan bahkan metana

·Tegangan keluaran analog 0V hingga 5V

·Tegangan keluaran digital 0V atau 5V (TTL Logic)

·Durasi pemanasan awal 20 detik

·Dapat digunakan sebagai sensor digital atau analog

·Sensitivitas pin digital dapat divariasikan menggunakan potensiometer 

Sensor ini dapat mendeteksi konsentrasi gas yang  mudah terbakar di udara serta asap dan keluarannya berupa tegangan analog. Sensor dapat mengukur konsentrasi gas mudah terbakar dari 300 sampai 10.000 sensor ppm. Dapat beroperasi pada suhu dari -20°C sampai 50°C dan mengkonsumsi arus kurang dari 150 mA pada 5V.

  






6. Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.



Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali.  Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet.  Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal.  Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik.  Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal close.

Fitur:

1. Tegangan pemicu (tegangan kumparan) 5V

2. Arus pemicu 70mA

3. Beban maksimum AC 10A @ 250 / 125V

4. Maksimum baban DC 10A @ 30 / 28V

5. Switching maksimum

9. Motor DC

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti



Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

 

7. IC OP AMP 

Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.

b. Inverting dan non inverting amplifier





Op-Amp memiliki beberapa karakteristik, diantaranya:

a. Penguat tegangan tak berhingga (AV = )

b. Impedansi input tak berhingga (rin = )

c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = )

d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)



Grafik input dan output op amp

8. Battery

Spesifikasi battery : 12 V

Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik. Ketika baterai memasok daya listrik, terminal positifnya adalah katode dan terminal negatifnya adalah anoda. Terminal bertanda negatif adalah sumber elektron yang akan mengalir melalui rangkaian listrik eksternal ke terminal positif. Ketika baterai dihubungkan ke beban listrik eksternal, reaksi redoks mengubah reaktan berenergi tinggi ke produk berenergi lebih rendah, dan perbedaan energi-bebas dikirim ke sirkuit eksternal sebagai energi listrik. Secara historis istilah "baterai" secara khusus mengacu pada perangkat yang terdiri dari beberapa sel, namun penggunaannya telah berkembang untuk memasukkan perangkat yang terdiri dari satu sel. Kutub yang bertanda positif menandakan bahwa memiliki energi potensial yang lebih tinggi daripada kutub bertanda negatif. Kutub bertanda negatif adalah sumber elektron yang ketika disambungkan dengan rangkaian eksternal akan mengalir dan memberikan energi ke peralatan eksternal. Ketika baterai dihubungkan dengan rangkaian eksternal, elektrolit dapat berpindah sebagai ion didalamnya, sehingga terjadi reaksi kimia pada kedua kutubnya. Perpindahan ion dalam baterai akan mengalirkan arus listrik keluar dari baterai sehingga menghasilkan kerja. Meski sebutan baterai secara teknis adalah alat dengan beberapa sel, sel tunggal juga umumnya disebut baterai.

9. Sensor Flame (sensor api) 

 Dalam suatu proses pembakaran pada pembangkit listrik tenaga uap, flame detector dapat mendeteksi hal tersebut dikarenakan oleh komponen-komponen pendukung dari flame detector. Sensor nyala api ini mempunyai sudut pembacaan sebesar 60 derajat, dan beroperasi normal pada suhu 25 – 85 derajat Celcius. Adapun unit flame detector dapat dilihat pada gambar dibawah ini:



 1. Pin1 (pin VCC): Suplai tegangan dari 3.3V ke 5.3V

 2. Pin2 (GND): Ini adalah pin ground

 3. Pin3 (AOUT): Ini adalah pin keluaran analog (MCU.IO)

 4. Pin4 (DOUT): Ini adalah pin keluaran digital (MCU.IO)

Spesifikasi

            1. Keluaran = Digital (D0)

            2. Output Digital: 0 dan 1

            3. Tegangan operasi: 3.3V hingga 5V

            4. Format keluaran: Output digital (TINGGI / RENDAH) 

            5. Rentang deteksi panjang gelombang: 760nm hingga 1100nm

            6. Menggunakan komparator LM393

            7. Sudut deteksi: sekitar 60 derajat

            8. Sensitivitas yang dapat disesuaikan melalui potensiometer

            9. Arus Keluaran Maksimum: 15 mA

            10. Indikator lampu LED: daya (merah) dan output switching digital (hijau)

            11. Api yang lebih ringan mendeteksi jarak 80cm

Cara kerja flame detector mampu bekerja dengan baik untuk menangkap nyala api untuk mencegah kebakaran, yaitu dengan mengidentifikasi atau mendeteksi  nyala apiyang dideteksi oleh keberadaan spectrum cahaya infra red maupun ultraviolet dengan menggunakan metode optic kemudian hasil pendeteksian itu akan diteruskan ke Microprosessor yang ada pada unit flame detector akan bekerja untuk membedakan spectrum cahaya yang terdapat pada api yang terdeteksi tersebut dengan sistem delay selama 2-3 detik pada detektor ini sehingga mampu mendeteksi sumber kebakaran lebih dini dan memungkinkan tidak terjadi sumber alarm palsu.

Pada sensor ini menggunakan tranduser yang berupa infrared (IR) sebagai sensing sensor. Tranduser ini digunakan untuk mendeteksi akan penyerapan cahaya pada panjang gelombang tertentu, yang memungkinkan alat ini untuk membedakan antara spectrum cahaya pada api dengan spectrum cahaya lainnya seperti spectrum cahaya lampu, kilatan petir, welding arc, metal grinding, hot turbine, reactor, dan masih banyak lagi. 

10. Gerbang Inverter

Gerbang NOT atau disebut juga "NOT GATE" atau Inverter (Gerbang Pembalik) adalah jenis gerbang logika yang hanya memiliki satu input (Masukan) dan satu output (keluaran). Dikatakan Inverter (gerbang pembalik) karena gerbang ini akan menghasilkan nilai ouput yang berlawanan dengan nilai inputnya . Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang NOT berikut.



Pada gerbang logika NOT, simbol yang menandakan operasi gerbang logika NOT adalah tanda minus (-) diatas variabel, perhatikan gambar diatas.

Perhatikan tabel kebenaran gerbang NOT. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang NOT akan menghasilkan output (keluaran) logika 1 bila variabel input (masukan) bernilai logika 0" sebalikanya "Gerbang NOT akan menghasilkan keluaran logika 0 bila input (masukan) bernilai logika 1
 
11. Decoder IC 4556
Decoder IC 4556 adalah decoder BCD atau binary to decimal, dimana memiliki 2 input dan Input enable dengan aktif rendah. Dan 4 output yang mewakili angka decimal dari 0-3 dengan output berupa tegangan rendah. 





12. Sensor LM35


                                             

Secara prinsip sensor akan melakukan penginderaan pada saat perubahan suhu setiap suhu 1 ºC akan menunjukan tegangan sebesar 10 mV. Pada penempatannya LM35 dapat ditempelkan dengan perekat atau dapat pula disemen pada permukaan akan tetapi suhunya akan sedikit berkurang sekitar 0,01 ºC karena terserap pada suhu permukaan tersebut. Dengan cara seperti ini diharapkan selisih antara suhu udara dan suhu permukaan dapat dideteksi oleh sensor LM35 sama dengan suhu disekitarnya, jika suhu udara disekitarnya jauh lebih tinggi atau jauh lebih rendah dari suhu permukaan, maka LM35 berada pada suhu permukaan dan suhu udara disekitarnya .

Jarak yang jauh diperlukan penghubung yang tidak terpengaruh oleh interferensi dari luar, dengan demikian digunakan kabel selubung yang ditanahkan sehingga dapat bertindak sebagai suatu antenna penerima dan simpangan didalamnya, juga dapat bertindak sebagai perata arus yang mengkoreksi pada kasus yang sedemikian, dengan mengunakan metode bypass kapasitor dari Vin untuk ditanahkan. Berikut ini adalah karakteristik dari sensor LM35:

  • Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam celcius.
  • Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 ºC
  •  Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.
  •  Bekerja pada tegangan 4 sampai 30 volt.
  •  Memiliki arus rendah yaitu kurang dari 60 µA.
  •  Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.
  •  Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA.
  •  Memiliki ketidaklinieran hanya sekitar ± ¼ ºC.
            

Sensor suhu LM35 memiliki karakteristik sebagai berikut.

  1. Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam Celsius.
  2. Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 ºC seperti terlihat pada gambar 2.2.
  3. Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.
  4. Bekerja pada tegangan 4 sampai 30 volt.
  5. Memiliki arus rendah yaitu kurang dari 60 µA.
  6. Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.
  7. Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA.
  8. Memiliki kesalahan hanya sekitar ± ¼ ºC.
Grafik :
13. Sensor getaran SW-420



                                            
Spesifikasi sensor
  • Menggunakan sensor SW-420 normally closed
  • Sinyal output comparator bersih, bergelombang bagus dan mampu menghantar lebih dari 15mA
  • Tegangan kerja 3.3V - 5V
  • Format output: 0 dan 1 (digital, rendah dan tinggi)
  • Dilengkapi lubang baut untuk instalasi
  • Papan PCB kecil berukuran 3.2cm x 1.4cm
  • Memakai comparator LM393
Grafik respon :
14. Infra Red Sensor


Tegangan operasi 5VDC

Pin I/O sesuai dengan 5V dan 3.3V

Jangkauan: Hingga 20cm

Rentang Penginderaan yang dapat disesuaikan

Sensor Cahaya Sekitar Bawaan

Arus pasokan 20mA

Lubang pemasangan


  15) Sensor Load Cell(model 1263)

    

Load Cell adalah alat electromekanik yang biasa disebut Transducer, yaitu gaya yang bekerja berdasarkan prinsip deformasi sebuah material akibat adanya tegangan mekanis yang bekerja, kemudian merubah gaya mekanik menjadi sinyal listrik.
Simbol load cell di proteus:

Respon sesnor:







4. Percobaan [Kembali]

    a. Prosedur percobaan
        1. Siapkan semua alat dan bahan yang diperlukan

        2. Disarankan agar membaca datasheet setiap komponen

        3. Cari komponen yang diperlukan di library proteus

        4. Rangkailah Rangkaian sesuai dengan gambar dibawah

        5. jika ingin mensimulasikan jangan lupa masukkan library sensor sensor 

        6. Jalankan rangkaian


    b. Gambar rangkaian








    c. Prinsip Kerja 

 -Sensor Infrared

Sensor mentrasmisikan sinyal infrared (IR trasmiter) kemudian sinyal inframerah ini dipantulkan oleh permukaan suatu objek dan sinyal diterima oleh penerima infrared (IR recevier), sehingga sensor berlogika 1. Arus mengalir  dari pin out ke J-K flip flop atau IC 74LS112. Input R dan S pada IC dijadikan tidak aktif dengan menghubungkan pin ke Vcc sehingga berlogika 1, karena input R S tidak aktif maka input dari J K akan digunakan sebagai pengolahan untuk output dari IC. Saat input J K berlogika 1, maka IC akan dalam keadaan toggle, yaitu output berlawanan dari output sebelumnya, yang mana perubahan dipicu oleh sinyal clock saat fall time, karena input CLK adalah active low.

Sehingga output yang dihasilkan akan berubah ubah, saat output berlogika 1, arus mengalir dari pin Q ke resistor lalu ke kaki base transistor. Kemudian karena terdapat tegangan sebesar (0,78V) maka transistor menyala, sehingga Vcc aktif, arus mengalir dari Vcc menuju ke relay menuju ke kaki collector lalu ke kaki emitor lalu ke ground. Karena terdapat tegangan sebesar (12V) maka relay akan berpindah dari kanan ke kiri, sehingga mengaktifkan baterai. arus mengalir dari kutub positif baterai lalu ke resistor lalu ke LED, LED menyala sebagai tanda adanya orang lain di luar bungker, lalu arus mengalir ke kutub negatif baterai.    


- Sensor suhu LM 35   
    Ketika suhu di ruangan besar dari 27 derajat celcius, maka tegangan yang keluar dengan menggunakan sensor LM35, sebesar dari +0.27 V. Dengan menggunakan rangkaian detektor inverting dengan Vref nya +0.27 V, maka dengan menggunakan rumus Vo = (Vi - Vref) Aol, didapatkan tegangan sebesar +0.77 V pada kaki base setelah melewati resistor sebesar 1k . M
aka akan ada tegangan pada kaki base transistor sebesar 0.78 V, sehingga mengaktifkan transistor. Tegangan dari Vcc aktif sebesar 5V. Arus mengalir dari Vcc ke kaki collector kemudian ke kaki emitter kemudian ke ground. Terdapat tegangan sebesar 9.5V sehingga menggeser relay dari kiri ke kanan. Arus mengalir dari kutub positif baterai kemudian ke motor, sehingga motor untuk menghidupkan AC aktif kemudian ke arus mengalir ke sounder secara paralel, lalu ke kutub negatif baterai.

- IC 4556 (demux) :

    Saat gas sensor berlogika 1 maka arus mengalir ke pin A demux 4556 sehingga pin tersebut berlogika 1, output yang dihasilkan dari demux tersebut saat pin A berlogika 1 yaitu Q0=1, Q1=0, Q2=1, dan Q3=1. Output Q1 terhubung ke rangkaian pengaktif motor penghisap asap. Berdasarkan input tadi, maka akan ada tegangan pada kaki base transistor sebesar 0.78 V setelah melewati resistor 10k, sehingga mengaktifkan transistor. Tegangan dari Vcc aktif sebesar 9V, arus mengalir dari Vcc ke kaki collector kemudian ke kaki emiter kemudian ke ground. Terdapat tegangan sebesar 9.5V sehingga menggeser relay dari kiri ke kanan. Arus mengalir dari kutub positif baterai kemudian ke motor, sehingga motor penghisap asap aktif kemudian ke LED secara paralel, kemudian ke buzzer secara parallel, kemudian ke kutub negatif baterai.
     Saat flame sensor berlogika 1 maka arus mengalir ke pin B demux 4556 sehingga pin tersebut berlogika 1, output yang dihasilkan dari demux tersebut saat pin B berlogika 1 yaitu Q0=1, Q1=1, Q2=0, dan Q3=1. Berdasarkan input tadi, maka arus mengalir dari pin Q3 ke gerbang not kemudian ke resistor kemudian ke transistor. Tegangan pada kaki base  akan ada tegangan pada kaki base transistor sebesar 0.79 V, sehingga mengaktifkan transistor. Tegangan dari Vcc aktif sebesar 9V, arus mengalir dari Vcc ke relay ke kaki collector kemudian ke kaki emiter kemudian ke ground. Terdapat tegangan sebesar 9.5V sehingga menggeser double relay dari kiri ke kanan. untuk relay sebelah kanan, saat bergeser dari kiri ke kanan maka hal yang akan terjadi yaitu menonaktifkan kelistrikan ruangan, sedangkan untuk relay sebelah kiri saat berbeser dari kiri ke kanan, maka arus mengalir dari kutub positif baterai ke motor pemadam api, kemudian ke LED secara paralel, kemudian ke kutub negatif baterai. Saat transistor tidak aktif, maka relay bergesar dari kiri ke kanan, sehingga akan mengaktifkan kelistrikan ruangan, arus mengalir dari sumber tegangan ke lampu ruangan secara paralel.

- Sensor getaran SW 420   
    Ketika sensor mendeteksi getaran, maka sensor akan berlogika 1 sehingga menghasilkan tegangan sebeasr 5V. Arus mengalir dari pin out ke resistor 10k kemudian ke ke kaki base transistor, tegangan terukur pada kaki base transistor yaitu +0.78V, sehingga mengaktifkan transistor. Tegangan dari Vcc aktif sebesar 9V. Arus mengalir dari Vcc ke kaki collector kemudian ke kaki emitter kemudian ke ground. Terdapat tegangan sebesar 9.5V sehingga menggeser relay dari kiri ke kanan. Arus mengalir dari kutub positif baterai kemudian ke LED, kemudian ke buzzer secara paralel lalu ke kutub negatif baterai.

Sensor LOADCELL
Lalu, ada LOADCELL sensor yang digunakan untuk mendeteksi beban pada lift. Jika nilai yang terbaca pada loadcell besa dari 85, untuk saat ini adalah 86, yang mana pada tegangannya yaitu sebesar 0.0207V dan diumpankan kekaki non-inverting amplifier dan diberi penguatan sebanyak 15 kali (R15/18 * Vin)  dan menghasilkan output 0,36V. Lalu, diumpankan lagi ke kaki non-inverting detektor. Dimana pada rangkaian detektor non-inverting terdapat tegangan referensi yang dapat diatur menggunakan potensiometer dgn maksimal tegangan sebesar 1V.  Cara mencari nilai tegangan referensi, persentase potensiometer yang dipakai dikali maksimal tegangan referensi, akan didapatkan (35%x1=0,35V). Kemudian, di rangkaian detektor non inverting, terdapat tegangan saturasi yang dimana ketika tegangan input >= tegangan referensi maka output yg dihasilkan adalah +Vsat, namun apabila tegangan input kecil dari tegangan referensi maka outputnya -Vsat. didapat dgn rumus (+-vsat= +-vs+-2) sehingga yang kita dapatkan pada rangkaian ini, krna tegangan input>= tegangan referensi, kita dapatkan +vsat sebesar 13,8V. Lalu diumpankan ke resistor sebesar 10k dan menghasilkan tegangan sebesar 0,87V. Yang mana cukup untuk mengaktifkan transistor, sehingga mengalir arus dari power supplay menuju relay, menuju kaki kolektor, lalu kaki emitor dan ground. Karena ada arus yang mengalirr, maka relay berpindah ke kiri dan arus mengalir dari batrai menuju motor untuk membuka pin dan juga alarm penanda bahwa kapasitas bebabn lift sudah melebihi batas.




  

5. Video Rangkaian [Kembali]




6. Link Download [Kembali]

Komentar

Postingan populer dari blog ini

MODUL 1

TUGAS BESAR

MODUL 1 Up & Uc